Vitrification
CRYOTOP®
Vitrification CRYOTOP®

- New Generation Synthetic Solutions
- Safety Vitrification for Oocytes and Embryos
- Worldwide Leader Open System: CRYOTOP®
- New CRYOTOP® SC: Closed System for Storage

CRYOTOP® Survival and Pregnancy rates in human specimen

The Cryotop Method

Cryotop is the special vitrification container consisting of a fine, thin film strip attached to a hard plastic handle for the minimum volume cooling to realize highest cooling & warming rates resulting in over 90% post-thaw survival. The Cryotop method is simple, reliable, universal, safe and easy for anyone. The Cryotop method has been applied to more than 1,000,000 clinical cases for oocytes/embryos as cryopreservation method for these 12 years with unbelievable excellent results in more than 70 countries (1,600 IVF centers). The Cryotop method is the most trustworthy cryopreservation method for oocytes and embryos proved by the best survival rates, and created huge number of safety birth results.

Vitrification Solutions have been improved with the new components HPC (Hidroxypropyl Cellulose) and Trehalose, obtaining synthetic media absolutely free from animal derived protein.
Vitrification and Thawing synthetic solutions

VT801 – Kitazato Vitrification Solutions

These solutions are intended for the vitrification of human oocytes and embryos in accordance with the Cryotop® method.

It is designed to be used in conjunction with the Kitazato Thawing Solutions for warming.

1. Vial 1.5 mL of BS (Basic Solution)
2. Vial 1.5 mL of ES (Equilibration Solution)
3. Vial 1.5 mL of VS (Vitrification Solution)

These solutions are intended for the warming and recovery of human oocytes or embryos that have been vitrified with Kitazato Vitrification Solutions.

1. Vial 4.0mL of TS (Thawing Solution)
2. Vial 4.0mL of DS (Diluent Solution)
3. Vial 4.0mL of WS (Washing Solution)

The solutions are provided in vials intended for single use. Shelf life is 3 months after date of manufacture.
Vitrification CRYOTOP®

The worldwide leader in Vitrification. More than 1,600 IVF Centers put their trust in its outstanding results.

Cryotop®
Available in 5 different colors.

Repro Plate
Designed to follow the Cryotop protocol.
Cryotop® SC
New Closed System for Storage.

CR-SC - Cryotop® SC (10 pcs)

Cooling Rack

Aluminum Block

Cutter

Sealer
Vitrification CRYOTOP®

KITAZATO VITRIFICATION ADVANTAGES

1. Valid for all stage of development: oocytes, PN, embryos, blastocysts.
2. Survival Results: over 90%.
3. Clinical Results: equivalent results from fresh and vitrified.
4. Reproducibility: detailed and easy to follow protocol.
5. Accumulation of oocytes: for low responder patients.
7. Egg-Banking: to avoid difficult synchronization donor-recipient.
8. Safety in donor’s programme: to keep quarantine if required.
9. Re-Vitrification: transfer of vitrified embryos from vitrified oocytes.
10. CRYOTOP® SC: Closed System for storage.

- HEPES within Basic Culture Media
- Ethylene Glycol
- Dimethyl Sulfoxide
- Trehalose
- Hydroxypropyl Cellulose
- pH : 7.2 - 7.6
- Osmolarity
- Endotoxin : <0.25EU/mL by LAL methodology
- Sterility (Bacteria, Fungi): current USP Sterility Test <71>
- MEA (Mouse Embryo Assay): One cell assay ≥80% after 96 hours
Clinical References

- Cobo A., Outcome of cryotransfer of embryos developed from vitrified oocytes: double vitrification has no impact on delivery rates. Fertility & Sterility, 2013.

- Chang C., Prospective controlled study to evaluate laboratory and clinical outcomes of oocyte vitrification obtained in vitro fertilization patients aged 30 to 39 years. Fertility & Sterility, 2013.

- Zhu D., Vitrified-warmed blastocyst transfer cycles yield higher pregnancy and implantation rates compared with fresh blastocyst transfer cycles-time for a new embryo transfer strategy? Fertility & Sterility, 2011.

- Trokudes KM., Comparison outcome of fresh and vitrified donor oocytes in an egg-sharing donation program. Fertility & Sterility, 2011.

- Lin TK., Cryotop vitrification as compared to conventional slow freezing for human embryos at the cleavage stage: survival and outcomes. Taiwan J Obstet Gynecol, 2010.

- Inoue F., Hydroxypropyl Cellulose as a macromolecular supplement for cryopreservation by vitrification of bovine oocytes and blastocysts and human oocytes. ESHRE and ASRM 2011.

- Inoue F., High post-warm survival of bovine oocytes vitrified with serum-free medium containing hydroxypropyl cellulose. Low Temp. Med. 2009

- Cobo A., Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertility & Sterility, 2008.